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Abstract: - Highly linear ramp waveforms are important in a variety of industrial processes, control systems, 

and test and measurement applications. The generation of ramp waveforms can be accomplished in several 

ways by means of both dedicated circuits and arbitrary waveform generators; the latter ones also grant the 

widest configurability of the output waveform both in terms of time and amplitude parameters. But, the 

waveforms generated by means of arbitrary waveform generators are characterized by piecewise time domain 

evolution. The underneath piecewise frame always implies a reduced conformity of the generated waveform to 

the intended one, even if the waveform is smoothed by means of a low-pass filter integrated in the generation 

chain. Conformity analyses can be carried out both in time and frequency domain, and their results expressed 

either by means of an error waveform or by pointing out the undesired spectral contributions. Typically, the 

insights allowed by the spectral analysis greatly help in both understanding the causes of poor conformity, and 

documenting the precision of the output waveform. Hereinafter, first a general explanation of the mechanisms 

that originate the distortion contributions and reduce the conformity of a piecewise waveform to the intended 

one is given. Then, the attention is focused on ramp waveforms generated by means of arbitrary waveform 

generators and a thorough analysis of their conformity to an ideal ramp is carried out. 

 

 

Key-Words: - Arbitrary waveform generator; Digital-to-analog converter; Direct digital synthesis; Waveform 

modeling; Linearity; Distortion analysis. 

 

1 Introduction 
Arbitrary waveform generators (AWGs) that 

operate by means of an internal digital-to-analog 

converter (DAC) represent the most versatile source 

for control and measurement applications in 

industry and research laboratories [1],[2]. They 

allow the user to define the desired waveform and 

reproduce it either in single shot mode, in order to 

have a transient stimulus, or in continuous mode, in 

order to have a periodic stimulus; they also allow to 

control the amplitude and time parameters that 

characterize the output waveform within a wide 

range of values [3],[4]. 

The operating principle of AWGs is nowadays 

largely exploited in the most recent hardware-in-the-

loop test-benches, adopted to test complex real-time 

embedded systems. These test-benches require to 

emulate the electrical output of sensors and 

actuators, which are acquired and processed by the 

system under test. Also, in electronic warfare 

applications based on digital radio frequency 

memory (DRFM) techniques, AWG-like 

architectures play a crucial role to create false 

targets to radars by re-transmitting radiofrequency 

signals that have been previously captured by means 

of a digitizer. Nonetheless, AWGs are largely 

employed as function generators to produce 

canonical waveforms [5]-[9]. 

The great versatility of AWGs is paid in terms of 

the distortion that could appear in the output 

waveform. The distortion usually consists in 

attenuated replicas of the double sideband desired 

spectrum, centered at integer multiples of the 

generation frequency. The use of a low pass filter, 

often integrated in the generation system and 

connected in series to the DAC, allows to attenuate 

the distortion whose spectral contributions are far 

outside the frequency band occupied by the useful 

waveform. As a general rule, it is always convenient 

to use a generation frequency sufficiently greater 

than the useful bandwidth, in order to move the 

distortion contributions at higher frequencies and 

improve the effectiveness of the smoothing 

operation. In the presence of constraints that limit 

the selection of the generation frequency, as well as 
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in critical applications that require a substantial 

reduction of the overall distortion, the user has to 

adopt dedicated approaches, such as the use of 

external filters, to prevent artifacts [10]. 

There are some special conditions in which 

additional distortion contributions can emerge. 

These contributions are centered at frequencies that 

are sub-multiples of the generation frequency, and 

can even fall within the bandwidth of the useful 

signal. A comprehension of the mechanism that 

originates them is definitely needed in order to 

design proper solutions to reduce their magnitude, 

and to thoroughly document the precision of the 

output waveform. At the best of the author’s 

knowledge, the mechanism that originates the 

distortion contributions at sub-harmonic frequencies 

of the generation frequency has not been sufficiently 

taken into consideration in the literature. In 

particular, no functional relationships that links the 

magnitude and frequency of the distortion 

contributions to the length of the digital signal, 

given in terms of number of samples, and the 

number of digital codes utilized by the DAC can be 

found in the literature [11]-[13]. 

After overviewing the aforementioned concepts, 

the case related to the employment of AWGs as 

ramp generators is dealt with. Ramp signals are 

widely adopted in test and measurement 

applications. In particular, they are used to calibrate 

the response of sensors, transducers, and several 

other devices; to drive and/or conditioning the 

behavior of actuators by means of servo control 

systems; to activate large magnets adopted in MRI 

machines, NMR spectrometers, mass spectrometers, 

and particle accelerators. In several of these 

applications the conformity of the actual ramp 

signal to the ideal one is a critical issue. In 

particular, the generated ramp has to satisfy tough 

requirements in terms of linearity and should avoid 

to excite resonances at high frequencies [14],[15]. 

The paper is structured in order to initially 

provide in Section II a brief overview of the most 

common approaches to arbitrary waveform 

generation. Then a general framework for analyzing 

the distortion to be expected in the output analog 

waveform is presented in Section III. Starting from 

this general framework, the case of digitally 

synthesized ramp signals is discussed in Section IV. 

Finally, Section V provides concluding remarks. 

 

 

2 Waveform Generation 
Arbitrary waveform generators can be of three 

different types, namely: true-arbitrary generators, 

direct-digital-synthesis (DDS) generators, and 

interpolating DAC generators. Actually, all the 

types share the same basic architecture that 

includes: a waveform memory to store a digital 

representation of the desired signal, one or more 

auxiliary registers to address memory cells and 

manage samples, a digital-to-analog converter, a 

master clock, and an output front-end device that 

consists in a smoothing filter and an amplifier 

circuit.  

 

 

2.1 True arbitrary generator 
The true arbitrary generator operates according to 

the most straightforward approach: the samples 

stored in the waveform memory are read one by one 

and converted into analog levels by means of a 

DAC operating at the master clock rate. A block 

diagram describing the architecture of a true 

arbitrary waveform generator is shown in Fig. 1. 

The user can control the period or the single-shot 

duration, T0, of the output waveform by regulating 

the period Tck of the master clock; in fact, for a 

waveform defined by means of M samples, one has 

the identity: 

 𝑇0 = 𝑀𝑇𝑐𝑘 (1) 

The samples stored into the waveform memory are 

addressed by means of a pointer (PTR), and hence 

fetched and given as digital input to the DAC. PTR 

is programmed to increase by one at each clock 

period in order to perform a sequential scan of the 

waveform memory. PTR can be managed according 

to an M-modulus arithmetic, M  being the number of 

samples stored in the waveform memory.  

 

 
Fig. 1. Block diagram of the architecture of a true-

arbitrary waveform generator. 

 

This is implemented when the user chooses a 

continuous generation mode: thanks to the 

M-modulus arithmetic, the increments by one 

automatically produce repetitive scans of the whole 

waveform memory. Several true arbitrary generators 

allow the user to employ only a portion of the whole 

waveform memory by choosing M from a limited 

set of values, typically including only power-of-two 

numbers. In this case, the waveform memory is 

managed by adjusting the length, in terms of 
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number of bits, of the PTR register, that according 

to the utilized portion has to be equal to lg2M.  

 

 

2.2 DDS-based generator 
The generators that rely on the direct digital 

synthesis (DDS) technique have similar 

architectures, as shown in Fig. 2, but work at a fixed 

clock period, Tck, and exploit two auxiliary registers, 

namely accumulator (ACC) and phase increment 

register (PIR), to grant the desired period or single 

shot duration to the output waveform, otherwise 

fixed at the duration given by equation (1). 

The DDS technique can be explained by considering 

the value stored in ACC and PIR as fixed point real 

numbers, consisting of an integer and a fractional 

part. The value of PIR is a function of the period or 

single shot duration T0 selected by the user and the 

fixed period Tck of the master clock: 

 PIR =
𝑀𝑇𝑐𝑘

𝑇0
 (2) 

The PTR is mapped into ACC, and contains the 

integer part of the value stored into ACC. PTR 

addresses the memory location from which the 

digital input for the DAC is fetched. At each clock 

period the value stored in PIR is added to ACC, so 

that PTR is incremented according to the increase of 

the integer part resulting for ACC. 

 

 
Fig. 2. Block diagram of the architecture of a DDS 

generator. 

 

It is worth noting that the increments of PTR, 

caused adding PIR to ACC can produce sometimes 

a carrier digit that makes the increment greater than 

the previous ones. For instance, if the PIR value is 

greater than 1, and q is the integer such that 

q < PIR < q+1, the PTR value changes at each clock 

period, incrementing by q or q+1. Note that in this 

case not all the samples hosted in the waveform 

memory are addressed and fetched in a single scan, 

but only one every q or q+1. The DDS technique 

provides for the accurate balance between the 

coexisting decimation factors, q and q+1, during the 

waveform reproduction, to attain the required period 

or single shot duration. 

If the PIR value is less than 1, named p the 

integer such that p < PIR
-1

 < p+1, a unitary 

increment is observed in PTR only after that p or 

p+1 clock periods have been elapsed. In other terms, 

adding PIR to ACC changes the fractional part of 

ACC, causing an increment of PTR only when a 

carrier digit is produced. The DDS technique 

provides for the adequate balance between the 

waiting clock periods, respectively p and p+1, to 

attain the required period or single shot duration for 

the output waveform.  

 

 

2.3 Interpolating DAC generator 
The most recent and advanced solution for arbitrary 

waveform generation is represented by the 

interpolating DAC generator. A block diagram 

useful to describe the architecture of this generator 

is shown in Fig. 3. Here, the output waveform is 

built up by a DAC system that is clocked at a higher 

sample rate with respect to the waveform memory 

access rate. A digital signal processing (DSP) block 

interfaces the waveform memory to the DAC and 

makes nontrivial the up-sampling implied by the 

different operating clock rates. Specifically, the DSP 

block, by means of a stable and computationally 

efficient finite impulse response (FIR) filter, 

performs a real time padding and interpolation 

between adjacent samples fetched by the waveform 

memory. 

 

 
Fig. 3. Block diagram of the architecture of an 

interpolating DAC generator. 

 

The interpolating DAC generator exploits at best the 

vertical resolution of the internal DAC, that can be 

even finer than the quantization characterizing the 

desired waveform. This typically happens when the 

specified waveform consists in an acquired record 

related to a real waveform of an observed source 

that the user wishes emulating. Besides, the user has 

to accept that the desired waveform, downloaded in 

the local memory of the generator, is somehow 

refined through real time processing operations 

performed at the reproduction stage by the firmware 

of the generator. 
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3 Piecewise Waveforms Modelling 
In this Section an analytical representation of an 

analog piecewise waveform produced by a DAC 

system for a given digital waveform s(n), aimed at 

representing a smoothed waveform s(t), is 

considered. It is always assumed that the sequence 

s(n) is causal, i.e. s(n) = 0 for n < 0. Also, the digital 

waveform is considered unlimited every time it 

represents the cyclical reproduction of the finite 

sequence stored in the local memory of the DAC 

system. Equally, s(n) is considered unlimited if 

synthesized in real time according to a given rule by 

a DSP block and given in streaming to the DAC 

system. 

The digital waveform s(n) is instead considered 

finite if the generator is utilized in single shot mode 

operation. 

The analog waveform produced by the DAC and 

observed in a limited time interval can be described 

in terms of a sequence of rectangular pulses, 

according to:  

 𝑠𝐷𝐴𝐶(𝑡) = 𝑟𝑒𝑐𝑡 (
𝑓𝑐𝑘𝑡

𝐿
) ∑ 𝑠(𝑛) 𝑟𝑒𝑐𝑡(𝑓𝑐𝑘𝑡 − 𝑛)𝑛  

  (3) 

in which fck is the generation frequency, rect(t) is a 

rectangular pulse equal to 1 in the time interval (0,1) 

and zero elsewhere, and the waveform is observed 

in a time interval characterized by duration equal to 

LTck seconds. 

To analyze the distortion characterizing the 

waveform sDAC(t) it is useful to evaluate its 

amplitude spectrum. By Fourier transforming 

equation (3) it is obtained: 

|𝑆𝐷𝐴𝐶(𝑓)| =   

= |𝑠𝑖𝑛𝑐 (
𝑓

𝐿𝑓𝑐𝑘
) ∗ (

1

𝑓𝑐𝑘
𝑠𝑖𝑛𝑐 (

𝑓

𝑓𝑐𝑘
) ∑ 𝑆(𝑓 − 𝑘𝑓𝑐𝑘)𝑘 )|  

  (4) 

in which S(f) is the Fourier transform of s(t). 

Equation (4) reveals the presence of distortion terms 

consisting in attenuated replicas of the desired 

spectrum, S(f), centered at frequencies kfck. As well 

known the observation time impacts on the 

frequency resolution of the spectral analysis. If the 

observation time is sufficiently long, the effects of 

the limited frequency resolution can be considered 

negligible, and the spectrum of the piecewise 

waveform accurately approximated by: 

 |𝑆𝐷𝐴𝐶(𝑓)| = |
1

𝑓𝑐𝑘
𝑠𝑖𝑛𝑐 (

𝑓

𝑓𝑐𝑘
)| |∑ 𝑆(𝑓 − 𝑘𝑓𝑐𝑘)𝑘 | 

  (5) 

since the sinc(.) core function, in the convolution 

product in equation (4), converges to an ideal Dirac 

distribution (.) as LTck approaches plus infinity. 

Actually, equations (3) and (5) although formally 

right, are not suitable to highlight the presence of 

some additional distortion contributions. These are 

produced every time that the same value persists at 

the input of the DAC system for two or more clock 

periods. This occurs when either the digital 

sequence s(n) itself presents equal values in next 

cells in the waveform memory, or when the AWG 

generator operation keeps constant the value given 

in input to the DAC for one or more clock periods, 

as can happen in DDS-based generators. Whichever 

the cause, an exact analytical description should 

take into account the number of clock periods for 

which the same value persists at the input of the 

DAC system. To this end, equation (3) is re-

formulated using time-stamped rectangular pulses 

characterized by different durations. Also, the 

positive discrete function, a(m), defined for a subset 

of all the discrete time instants n, named A = {m}, is 

introduced. The time instants identified by the 

values of m timestamp the change of the DAC input; 

the function a(m) returns the number of clock 

periods to wait before observing the next change. 

The time instants m collected in A also timestamp 

the occurrences of the rectangular pulses that allow 

to represent the output of the DAC system as:  

 𝑠𝐷𝐴𝐶(𝑡) = ∑ 𝑠(𝑚) 𝑚∈𝐴 𝑟𝑒𝑐𝑡 (
𝑓𝑐𝑘

𝑎(𝑚)
𝑡 − 𝑚) 

  (6) 

In equation (6) the time duration of the m-th 

rectangular pulse is a(m)Tck, and an unlimited 

observation window has been assumed. Note that 

equation (6) includes equations (3) when the set A 

coincides with the set of integers, which implies 

a(m) = a(n) = 1. 

 

 

4 Ramp Waveform 
The use of arbitrary generators to produce ramp 

signals represents a relevant case study. 

If the adopted generator is a true arbitrary type 

integrating a DAC with N bits, and if allows an 

arbitrary segmentation of the waveform memory, 

the user can conveniently choose to describe the 

ramp signal with a sequence made up of exactly 

C = 2
N
 samples, i.e. with a sequence containing just 

once all the admissible input values for the DAC. A 

portion of the analog waveform produced by the 

DAC in this hypothesis is shown in Fig. 4. The 
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greatest displacement from linearity is observed 

immediately before and after the DAC output level 

switching, and it is equal to half time the vertical 

resolution of the DAC. The error signal is described 

by a saw-tooth waveform with peak-to-peak value 

equal to the DAC vertical resolution. 

 

 
Fig. 4. Portion of the analog waveform produced by the 

DAC (bold line) compared to an ideal ramp (dotted line). 

 

According to equations (4) and (5), the amplitude 

spectrum of the piecewise ramp, shown in Fig. 5, is 

characterized by several replicas of the ideal 

amplitude spectrum of a ramp with finite duration. 

The replicas are centered at all the multiples of the 

generation frequency, fck, selected by the user; the 

higher the center frequency of the replica the more 

attenuated its magnitude. It is interesting to observe 

the effects due to the replicas, which consist in some 

reduction of the energy spectral density at low 

frequencies with respect to the ideal case and in the 

notches at the frequencies fck in Fig.5.  

 

 
Fig. 5. Amplitude spectrum of a piecewise ramp. 

 

To accurately describe the output of the 

generator one has also to consider the effects of the 

smoothing filter and that of the master clock 

stability. The first can largely contribute to reduce 

the distortion caused by the undesired replicas; it 

smooths and attenuates the saw-tooth error signal 

and gets the piecewise waveform approach the 

desired linear trend. The effectiveness of the filter is 

related to the attenuation that can be granted out of 

the band of interest, and principally at all the 

frequencies that are multiples of the generation 

frequency fck. It would be convenient to have a 

smoothing filter with stop-band characteristics tuned 

to fck. But, due to the general purpose character of 

the AWG, the user can only rely on the effects of 

one or a very limited set of selectable filters with 

fixed configuration and no tuning options. The 

stability of the master clock represents an effect of 

secondary importance although not negligible. The 

variable clock has to grant a wide choice of the 

timing signal, and cannot compete in performance 

with fixed frequency clocks. A timing error  due to 

a lead or delay of the clock pulse in the worst case 

can increase the displacement from linearity by   

times the ramp slope.  

It is worth noting that if in place of a true 

arbitrary generator a DDS-based AWG is adopted, 

the linearity of the output ramp can be analyzed 

taking into account, equivalently, that systematic 

timing errors in the master clock could be 

intentionally and repeatedly introduced according to 

a regular or quasi-regular pattern. The DDS-based 

AWG has however the advantage of using a fixed 

stable frequency. 

The linearity of the ramp waveform can be 

substantially degraded when the adopted generator 

does not allow an arbitrary segmentation of the 

waveform memory. In this case the user is 

compelled at defining the digital signal using a 

given number M of digital samples. Typically M is 

larger enough to be greater than the number of DAC 

input codes, C, and allows avoiding decimation 

(M > C). Actually, if the ratio M/C is equal to an 

integer value Q, each digital code is consecutively 

found Q times in the sequence that defines the 

digital waveform. The output waveform can be 

described using equation (6) with a(m) = Q, and 

considering m  as a subsequence extracted from n 

being A = {m = Qn}:  

 𝑠𝐷𝐴𝐶(𝑡) = ∑ 𝑠(𝑚) 𝑚 𝑟𝑒𝑐𝑡 (
𝑓𝑐𝑘

𝑄
𝑡 − 𝑚) (7) 

Equation (7) accounts for a piecewise waveform 

with all pieces characterized by duration equal to 

QTck, Tck being the constant period of the master 

clock of the generator. The amplitude spectrum of 

the generated ramp can be expressed by: 

 |𝑆𝐷𝐴𝐶(𝑓)| = |
𝑄

𝑓𝑐𝑘
𝑠𝑖𝑛𝑐 (

𝑄

𝑓𝑐𝑘
𝑓)| |∑ 𝑆 (𝑓 − 𝑘

𝑓𝑐𝑘

𝑄
)𝑘 | 

  (8) 

Equation (8) highlights attenuated replicas of the 

desired amplitude spectrum, which are centered at 
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multiples of a sub-harmonic of the master clock 

frequency, namely fck/Q. Note that equation (8) has 

been derived from equation (5) and therefore does 

not take into account the narrow-band leakage effect 

produced by the limited time duration of the 

generated ramp, which is in general highlighted by 

equation (4). 

If the ratio M/C is not integer but 

R < M/C < R+1, any digital code in the sequence 

can be consecutively found either R or R + 1 times, 

being R implicitly defined by the aforementioned 

inequalities as the integer part of the ratio M/C. If D 

is the remainder after the division of M by C, the 

following identities are true: 

 M = CR + D = (C -D)R + D(R +1) (9) 

The input codes can be therefore distinguished into 

two groups: the first one includes C - D codes that 

are repeated R times, the other group D codes that 

are repeated R + 1 times. The codes of the two 

groups are uniformly intermingled between each 

other, according to a uniform or quasi-uniform 

pattern. Specifically, the pattern is periodic if: 

 E = min{C - D, D} (10) 

divides M, and its period is given by: 

 𝑃 =
𝑀

𝐸
 (11) 

In particular, the pattern includes a set counting L 

codes of one group followed by a code of the other 

group. Two cases can be distinguished: if E = D, 

then one can identify in the digital ramp L codes 

repeated R times before a single instance of a code 

repeated R + 1 times. The period of the pattern 

satisfies equation: 

 𝑃 = 𝐿𝑅 + (𝑅 + 1) (12) 

according to which  

 𝐿 =
𝑃−1

𝑅
− 1 =

𝑀

𝐷
−1

𝑅
− 1 (13) 

In the other case, E = C – D, the period is: 

 𝑃 = 𝑅 + 𝐿(𝑅 + 1) (14) 

according to which: 

 𝐿 =
𝑃−𝑅

𝑅+1
=

𝑀

𝐶−𝐷
−𝑅

𝑅+1
 (15) 

In the first case the output waveform can be 

analytically described in the time domain by:  

𝑠𝐷𝐴𝐶(𝑡) = ∑ (∑ 𝑠(𝑖 + 𝑙𝑅)𝑟𝑒𝑐𝑡 (
𝑓𝑐𝑘

𝑅
𝑡 − 𝑖 −𝐿−1

𝑙=0𝑖

𝑙𝑅) +  𝑠(𝑖 + 𝐿𝑅)𝑟𝑒𝑐𝑡 (
𝑓𝑐𝑘

𝑅+1
𝑡 − 𝑖 − 𝐿𝑅)) (16) 

where the index of summation i timestamps the 

occurrences of each periodic pattern; i is a sub-

sequence extracted from n, namely i = Pn. Similarly 

an analytical description can be given also for the 

second case. 

The amplitude spectrum of the waveform is 

given by the Fourier transform, which, in both 

cases, cannot be expressed in closed form without 

approximations. Nonetheless, the two cases 

analyzed are related to very particular conditions, 

whereas in the general case there is no period P, and 

the lacks of regularity in the code repetition patterns 

have to be regarded as local non-stationarity 

features of the waveform. The Fourier transform 

cannot inform on non-stationary characters, but 

offers anyway an insight on the average energy 

spectral distribution. Taking into account these 

premises, the amplitude spectrum of the generated 

ramp can be approximated by:  

|𝑆𝐷𝐴𝐶(𝑓)| =

|
(𝐶−𝐷)𝑅

𝐶𝑓𝑐𝑘
𝑠𝑖𝑛𝑐 (

𝑅

𝑓𝑐𝑘
𝑓) +

𝐷(𝑅+1)

𝐶𝑓𝑐𝑘
𝑠𝑖𝑛𝑐 (

𝑅+1

𝑓𝑐𝑘
𝑓) 𝑒

−𝑖𝜋
𝑓

𝑓𝑐𝑘| |∑ 𝑆 (𝑓 − 𝑘
𝐶

𝑀
𝑓𝑐𝑘)𝑘 | 

  (17) 

Equations (17) accounts for the undesired presence 

in the amplitude spectrum of the generated ramp of 

attenuated replicas of the desired spectrum centered 

at multiples of a fraction of the master clock 

frequency, namely Mfck/C. The weighting function 

that describes the attenuation is a linear combination 

of the spectral images of the rectangular pulses of 

time durations equal to RTck and (R+1)Tck; the linear 

combination uses as weighting coefficients the 

relative number of occurrences of the corresponding 

pulses in the time domain representation of the 

piecewise ramp. It is worth noting that if the ratio 

M/C is integer then D = 0 and equation (17) 

coincides with (7). 

As an example the amplitude spectrum of a ramp 

waveform described by means of a sequence 

counting 1000 samples and generated by means of 

an AWG that uses an 8-bit DAC is shown in Fig. 6. 

It is worth noting the notches localized at 

frequencies Mfck/C that are multiple of a fraction of 

the generation frequency.   

 

 

5 Conclusions 
A study aimed at investigating the conformity of 

waveforms played by means of arbitrary waveform 

generators to the intended one has been carried out. 
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It has been shown how the underneath piecewise 

character of AWG output always implies a reduced 

conformity, even if the waveform is smoothed by 

means of a low-pass filter. Conformity has been 

analyzed both in time and frequency domain. 

Special attention has been payed to ramp 

waveforms, widely used in control and 

measurement applications. Approaches to describe 

ramp waveform generated by means of AWG have 

been presented and discussed.  

 

 
Fig. 6. Amplitude spectrum of a ramp waveform 

described by 1000 samples quantized wit 8 bits.  
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